I ricercatori dell’ETH di Zurigo hanno creato il gatto di Schrödinger più pesante finora mettendo un cristallo in una sovrapposizione di due stati di oscillazione. I loro risultati potrebbero portare a qubit più potenti e aiutare a spiegare perché i qubit non vengono osservati nella vita di tutti i giorni.
- I ricercatori dell’ETH di Zurigo hanno creato il gatto più pesante di Schrödinger.
- Per questo, hanno combinato un cristallo oscillante con un circuito superconduttore.
- Sperano di capire meglio perché gli effetti quantistici scompaiono nel mondo macroscopico.
Anche se non sei un fisico quantistico, probabilmente hai sentito parlare del gatto di Schrödinger. Erwin Schrödinger ha inventato gatti che potrebbero essere sia vivi che morti allo stesso tempo in un esperimento mentale nel 1935. L’ovvio paradosso: dopotutto, nella vita di tutti i giorni vediamo solo gatti che sono vivi o vivi. O Morto – ha spinto gli scienziati a provare a realizzare situazioni simili in laboratorio. Finora sono stati in grado di farlo utilizzando, ad esempio, atomi o molecole in stati di sovrapposizione quantomeccanica in cui si trovano in due posti contemporaneamente.
All’ETH, un team di ricercatori guidato da Yiwen Chu, professore al Solid State Physics Laboratory, ha creato un gatto di Schrödinger notevolmente più pesante ponendo un piccolo cristallo in una sovrapposizione di due stati di oscillazione. I loro risultati, pubblicati questa settimana sulla rivista scientifica Science, potrebbero portare a qubit più potenti e far luce sul mistero del perché le sovrapposizioni quantistiche non si osservano nel mondo macroscopico.
gatto in una scatola
Nell’originale esperimento mentale di Schrödinger, un gatto è rinchiuso in una scatola di metallo con materiale radioattivo, un contatore Geiger e una fiala di veleno. In un certo lasso di tempo – un’ora, per esempio -[{” attribute=””>atom in the substance may or may not decay through a quantum mechanical process with a certain probability, and the decay products might cause the Geiger counter to go off and trigger a mechanism that smashes the flask containing the poison, which would eventually kill the cat. Since an outside observer cannot know whether an atom has actually decayed, he or she also doesn’t know whether the cat is alive or dead – according to quantum mechanics, which governs the decay of the atom, it should be in an alive/dead superposition state. (Schrödinger’s idea is commemorated by a life-size cat figure outside his former home at Huttenstrasse 9 in Zurich).
“Of course, in the lab we can’t realize such an experiment with an actual cat weighing several kilograms,” says Chu. Instead, she and her co-workers managed to create a so-called cat state using an oscillating crystal, which represents the cat, with a superconducting circuit representing the original atom. That circuit is essentially a quantum bit or qubit that can take on the logical states “0” or “1” or a superposition of both states, “0+1”. The link between the qubit and the crystal “cat” is not a Geiger counter and poison, but rather a layer of piezoelectric material that creates an electric field when the crystal changes shape while oscillating. That electric field can be coupled to the electric field of the qubit, and hence the superposition state of the qubit can be transferred to the crystal.
Simultaneous oscillations in opposite directions
As a result, the crystal can now oscillate in two directions at the same time – up/down and down/up, for instance. Those two directions represent the “alive” or “dead” states of the cat. “By putting the two oscillation states of the crystal in a superposition, we have effectively created a Schrödinger cat weighing 16 micrograms,” explains Chu. That is roughly the mass of a fine grain of sand and nowhere near that of a cat, but still several billion times heavier than an atom or molecule, making it the fattest quantum cat to date.
In order for the oscillation states to be true cat states, it is important that they be macroscopically distinguishable. This means that the separation of the “up” and “down” states should be larger than any thermal or quantum fluctuations of the positions of the atoms inside the crystal. Chu and her colleagues checked this by measuring the spatial separation of the two states using the superconducting qubit. Even though the measured separation was only a billionth of a billionth of a meter – smaller than an atom, in fact – it was large enough to clearly distinguish the states.
Measuring small disturbances with cat states
In the future, Chu would like to push the mass limits of her crystal cats even further. “This is interesting because it will allow us to better understand the reason behind the disappearance of quantum effects in the macroscopic world of real cats,” she says. Beyond this rather academic interest, there are also potential applications in quantum technologies. For instance, quantum information stored in qubits could be made more robust by using cat states made up of a huge number of atoms in a crystal rather than relying on single atoms or ions, as is currently done. Also, the extreme sensitivity of massive objects in superposition states to external noise could be exploited for precise measurements of tiny disturbances such as gravitational waves or for detecting dark matter.
Reference: “Schrödinger cat states of a 16-microgram mechanical oscillator” by Marius Bild, Matteo Fadel, Yu Yang, Uwe von Lüpke, Phillip Martin, Alessandro Bruno and Yiwen Chu, 20 April 2023, Science.
DOI: 10.1126/science.adf7553
“Appassionato pioniere della birra. Alcolico inguaribile. Geek del bacon. Drogato generale del web.”